Tag: Porcelain

Fiske ^6 Celadon

Fiske Celadon Blue
Gin&Tonic Cocktail Glasses


I get asked a lot about this recipe, and for good reason. It’s pretty indistinguishable from the best cone 10 recipes out there. For those purists out there, I’m referring to Pinnell Clear, Deller Chun, Cushing’s LungChun, and any number of Robert Tichane’s recipes from his book Celadon Blues. In any event, I often point people to an older post, but in the years since I mistakenly transcribed a recipe wrong and happened on the winning formula, I’ve learned quite a bit working with this glaze; Things like it working reasonably well in soda and atmospheric kilns, looking very nice from a range of cone 5 to cone 12, and readily taking most mason stains.

The Recipe

Fiske 6/10 Clear Base:

F4 (Or MinSpar) Feldspar 34.9

Whiting 12.8

Zinc Oxide 11

OM4 Ball Clay 13.8

Silica 27.5

(Pictured: Add 1.75% Robin’s Egg Blue Mason Stain)


Notes on materials, mixing, and application:

Feldspar:Since F4 is no longer widely available, Minspar 200 will work. Custer works as well, but the bubble matrix that really gives this glaze it’s character is different with custer, g200 (now g200hp), or nepheline syenite. Experiment first, because milage may vary. Of the ingredients, this is probably the 3rd most important.

Fluxes: Whiting and Zinc. This glaze is not kind to kiln elements. (See my post on zinc for clarification!) It’s my opinion that the relatively high % of zinc is caustic to electric kiln elements. If you must, ventilate the kiln, but expect a short life on the elements. Sometime in the near future I’ll be eliminating zinc and trying to use a frit to solve this, but until then I can only recommend firing in a gas kiln. It’s the cost of firing.

Clay: Probably the most important element of this recipe. When I was testing for cone 6 glazes, I made a mistake transcribing to a batch recipe. The result was that I had doubled the clay. After the firing I went back over the notes and realized why the glaze looked the way it did. One of the side effects of the higher clay content is that application is sometimes difficult. The higher % of clay makes thick applications crawl. To get around this I calcine 10 of the 15%.

Thus, my recipe looks like this:

Fiske 6/10 Clear Base: Minspar200 Feldspar 38, Whiting 14, Zinc Oxide 12, Calcined OM4 Ball Clay 10, OM4 Ball Clay 5, Silica 30. [H20 60%]

Silica: I use 200mesh sil-co-sil. I’ve tried 325 mesh, but it didn’t look right.

Colors/Mason Stains: I use Robin’s Egg Blue, Bermuda Green, and Canary yellow. Most colors I’ve tested, and usually 1.5-3% is pretty nice, but some take as much as 5-10%. I haven’t had much luck with purples, Pinks, and oranges, (they don’t play nice with the zinc) but honestly I’m largely done tweaking this one and haven’t tried in earnest to figure out those other colors.   Metallic oxides will also work, cobalt at like .3% for a not overpowered blue color.

Application: Can’t stress this enough. It’s gotta be thick. I tell people to glaze “Thicker than you think thick is, and then just a little thicker.” I’ve taken to adding just a touch of deflocculent to the glaze batch so that it needs less water to become liquid. I then add a bit of Epsom salt to thicken the batch up. Again, this is to taste. Dipping is absolutely the way to go with this one, but I’ve gotten accustomed to spraying it. Usually takes about 15 minutes to spray glaze something appropriately.

Firing: As I mentioned earlier, it’s got a pretty wide range. It will be fully melted, albeit slightly pin holed at cone 5. Ideally, I like to go to a perfect 6, but taking it to 7 or programming a hold in the schedule makes for some nice movement that suits carving and texture very well. Most of my work is completely smooth, so I prefer it to stay thick and not run down too much. It takes some getting used to, but when you do, it behaves very predictably. It can also go into reduction, but the colors change quite a bit. Less change with Bermuda Green, but quite a bit with the Robin Egg Blue. Its been fired every which way, and needs to be tested before full comittment.

New Pots, New Recipes

#6, #5, #4 Manganese Saturate Crystalline Glazes
#6, #5, #4
Manganese Saturate Crystalline Glazes

#4 Recipe & Schedule

Fisker Bronze
Custer Feldspar.............     57.000  
  Alberta Slip................    7.000  
  Sil-co-sil..................    2.500  
  F-4 Feldspar................    1.500  
  Calcium Carbonate...........    0.500  
  Dolomite....................    0.500  
  OM #4 Ball Clay.............    2.000  
  MnO.........................   23.000  
  Copper Carbonate............    5.500  
  Iron Oxide Red..............    0.500  

  Oxide   Formula  Analysis    Molar%
  CaO      0.043*   1.129%w   1.376%m
  MgO      0.019*   0.348%w   0.590%m
  K2O      0.143*   6.237%w   4.528%m
  Na2O     0.071*   2.052%w   2.264%m
  P2O5     0.000*   0.007%w   0.003%m
  TiO2     0.001    0.055%w   0.047%m
  Al2O3    0.252   11.952%w   8.013%m
  SiO2     1.783   49.756%w  56.619%m
  CuO      0.099    3.670%w   3.156%m
  Fe2O3    0.013    0.955%w   0.408%m
  MnO      0.724*  23.839%w  22.995%m

                        Cost:   0.273
              Calculated LOI:   3.521
                 Imposed LOI:        
                       Si:Al:   7.066
                      SiB:Al:   7.066
           Thermal Expansion:   6.848

Fired in Blaauw Reduction Schedule (in Celcius):

time_temp 00:00 5
time_temp 00:54 140
time_temp 01:12 260
time_temp 01:10 550
time_temp 00:30 600
time_temp 01:12 900
oxidation 83
time_temp 00:45 900
oxidation 93
time_temp 03:06 1210
oxidation 98
time_temp 01:24 1270
time_temp 02:15 1000
time_temp 01:00 900
time_temp 02:00 500
time_temp 01:00 300
time_temp 02:30 50
time_temp 04:00 50

#5 Recipe & Schedule

  Nepheline Syenite...........   65.500  
  MnO.........................   22.000  
  Silica......................   12.500  

  Oxide   Formula  Analysis    Molar%
  CaO      0.018*   0.465%w   0.559%m
  MgO      0.004*   0.067%w   0.112%m
  K2O      0.071*   3.036%w   2.175%m
  Na2O     0.228*   6.461%w   7.033%m
  Al2O3    0.330   15.361%w  10.163%m
  SiO2     1.913   52.523%w  58.975%m
  Fe2O3    0.001    0.072%w   0.030%m
  MnO      0.680*  22.014%w  20.953%m

                        Cost:   0.312
              Calculated LOI:   0.065
                 Imposed LOI:        
                       Si:Al:   5.803
                      SiB:Al:   5.803
           Thermal Expansion:   7.492
              Formula Weight: 218.874

Strike Reduction Hold Firing Schedule 
in Small Test Gas Kiln in F

3:30 -> 1500F (^012)
Body Reduction
1:00 -> 1700F (^04)
Adjust to Moderate reduction, fast climb
3:30 -> 2300F (^9 flat, ^10 down)
Crash Cool
0:15 -> 1840F
Cut secondary air, minimize primary air, damp in, gas low to strong reduction and stalled holding temp
3:00 -> 1840F (Hold)
Off, Natural Cool
6:00 -> 300F

#6 Recipe & Firing Schedule

  Custer Feldspar.............   69.000  
  OM #4 Ball Clay.............    1.500  
  MnO.........................   27.500  
  Granular Manganese..........    2.000  

  Oxide   Formula  Analysis    Molar%
  CaO      0.007*   0.210%w   0.256%m
  MgO      0.000*   0.006%w   0.010%m
  K2O      0.140*   6.961%w   5.057%m
  Na2O     0.064*   2.091%w   2.308%m
  TiO2     0.000    0.018%w   0.016%m
  Al2O3    0.226   12.223%w   8.201%m
  SiO2     1.533   48.751%w  55.512%m
  Fe2O3    0.001    0.123%w   0.053%m
  MnO      0.789*  29.617%w  28.588%m

                        Cost:   0.297
              Calculated LOI:        
                 Imposed LOI:        
                       Si:Al:   6.769
                      SiB:Al:   6.769
           Thermal Expansion:   7.120

Fired in Blaauw Reduction Schedule (in Celcius):

time_temp 00:00 5
time_temp 00:54 140
time_temp 01:12 260
time_temp 01:10 550
time_temp 00:30 600
time_temp 01:12 900
oxidation 83
time_temp 00:45 900
oxidation 93
time_temp 03:06 1210
oxidation 98
time_temp 01:24 1270
time_temp 02:15 1000
time_temp 01:00 900
time_temp 02:00 500
time_temp 01:00 300
time_temp 02:30 50
time_temp 04:00 50

Iridescent Glaze Research

Download the full PDF of my research Paper:

Iridescent Glazes

Download the full Powerpoint of my research Presentation:

Iridescent and Manganese Crystalline Glazes




Text From Paper:


Matt Fiske

Technology of Ceramics, Glaze Calc

April 24, 2014

Iridescent and Manganese Crystalline Glazes

Manganese crystalline glazes (high alkali, silica, and alumina) are usually created by saturating a feldspathic glaze with between 15-60% manganese dioxide. During the cooling cycle, manganese precipitates out of the molten glaze and crystallizes on the surface, producing lustrous, satiny surfaces.

UNDERSTATEMENT: Manganese Dioxide is extremely hazardous to your health!!!

 Breathing in Manganese dust when mixing these glazes or breathing the off-gassing vapor when firing WILL GIVE YOU PARKINSONS-LIKE SYMPTOMS BEFORE ULTIMATELY KILLING YOU, PAINFULLY. HEAVY GLOVES, DUST MASKS, AND VENTILLATION ARE CRITICAL.


Historical Information

            There is a long history of lustrous, metallic glazes. The first examples are thought to be from the early ninth century in an around what is modern day Iraq. Archeological evidence suggests that early examples originated from Mesopotamia in Fustat, which was then the capitol or Egypt. The oldest surviving examples were often multi-colored stains and iridescent sheens derived from copper and silver compounds. These compounds were usually manufactured by dissolving coins into acids and then mixing the resulting solution with earthenware clay. This mixture was then calcined and then finely ground. The resulting pigment was then mixed with a carrier (usually lavender oil) and applied to lead or tin glazed pots and re-fired to dull red heat. The pots were then held in an extremely smoky reduction environment at various temperatures and lengths of time, which resulted in surfaces ranging from olive-green, brown, amber, orange, yellow, crimson, and a very dark red which was sometimes so dark as to look almost black.[1]

Although the history and development of reduced-pigment lusters is long and storied, it was a more or less consistent sequence. It isn’t until the 19th century that one starts to find examples of resinate lusters. This resulted in the development of materials almost identical to modern ‘liquid gold’ and ‘platinum’ lusters. In Europe in the 1870s a revival in the technology and development of luster glazes saw a further refinement of reduced glaze lusters, most notably in the studios of William De Morgan, Massier, Kähler, and Zsolnay. This notable shift was the result of the use of higher firing clays, which French ceramicist Louis Franchet believed could offer the complete range of earlier pigment-lusters, but without a lot of the trouble.[2] Aside from the obvious temperature differences, the main difference between pigment and reduced glazes is that glaze lusters are generally less subtle, less mellow, and offers a wider, more brilliant range of color.


I began research on this project in an attempt to find a brilliant, iridescent glaze similar to Zsolnay’s famous Eosin glaze, which has a very obvious bright reflective rainbow iridescent quality. Initial research suggested that Zsolnay’s effects were the result of the thin application of copper, silver or bismuth to a pre-fired glaze – firing to fusion point, and then reducing the kiln atmosphere during the cooling cycle. This method is documented extensively in Greg Daly’s book Lustre. Having had some glimmers of success with iron saturate glazes in reduction cooling environments, I proposed a solution that did not; 1.) involve expensive silver or bismuth oxides, or caustic salts such as stannous chloride or copper sulfate, and 2.) involve a postfiring or overly exotic and difficult to repeat firing schedule. In the end, a satisfactory solution was some combination of feldspathic glazes with 30-60% Manganese Dioxide, following closely in the steps of David Shaner, Lucie Rie, Hans Coper, John Tilton, and historical Rockingham ware.


Reduced-pigment luster. Nearly all historical luster made before 1800 fits in this category. The result of calcining copper, silver, and bismuth oxides with earthenware or laterite clays, and applying the resulting mixture to a maturely fired lead or tin glaze surface. The piece is then refired and held in heavy reduction at dull red heat allowing for a thin layer or metallic oxide to fuse with the surface of the glaze. After the firing, the earthenware is wiped away, revealing a nano-thick layer of iridescent metal.

Resinate luster. Usually made with dissolved gold, platinum, or other noble metals and suspended in an organic binder. Generally fired to a low temperature, with the organic compounds burning out and fluxing a thin, even layer of metallic oxides with the surface of the work. Developed around 1800, very common in industry, very toxic.

Reduced Glaze Luster­. Generally higher porcelain and stoneware temperature. Usually cover the entire surface of a form. Relies on metallic saturated glazes precipitating out thin layers of reduced metallic oxides which deposit in a thin layer on the top of the glaze. Generally more brilliant and operate across a wider spectrum of interrupted light.

Technical Information

            Materials: I found that nearly all of my iridescent surfaces contained some percentage of manganese. The exception is a traditional Tenmoku glaze fired in standard reduction, and then ‘struck’ at 1840F for 1:20-2:00 hours. Strike firing, or striking the kiln is a glass term which refers to increasing the fuel supply and thus creating a reducing atmosphere around 1800F. Initial tests suggested that manganese saturated glazes promoted richer iridescent surfaces regardless of a strike firing. Additions of other oxides were often counterproductive to glossy surfaces and generally resulted in unpleasant black, rough surfaces. Copper, Iron, Chrome, Nickle, and Cobalt were all tested alone and in conjunction from .1 -> 20%. The character of the underlying glass matrix of was usually beer bottle brown, so I tested extensively to change the color of the glass without effecting the iridescent surface – to date I still don’t have a simple solution to this problem. Granular Manganese seemed to produce brighter colors as well as promoting streaking ‘hares-fur’ effects in faster cooling, and acting as ‘seeds’ to crystal formation on slower cooling cycles. My ideal concentration of granular manganese was 2% and fine manganese dioxide at about 27%.

Most recipes called for 50-70% feldspar, and after testing all of the available feldspars, I found that Nepheline syenite promoted a much smoother, regular iridescence. Custer feldspar promoted iridescence across a wider spectrum, but promoted intense crystallization as to appear almost pixellated. Kona f4 promoted a more matte, golden green/purple sheen. Other feldspars promoted a lustrous brown glass with varying degrees of light to moderate iridescence.

The addition of silica promoted a lightening of the glass matrix, as well as a sugary, semi- shiny sparkling satin luster. Silica beyond 15% eliminated iridescence. Alumina additions to the glaze produced a semi-matt honey colored glaze.

I found that the clay body had a huge impact on the color and quality of the iridescence. The most successful clay bodies were grolleg based porcelains, with only the highest percentages of manganese based glaze recipes showing even the slightest luster on stoneware recipes.

Finally, glaze thickness was perhaps the most critical aspect of obtaining iridescence at high temperature. This was complicated as these glazes are extremely runny. Even slight overfiring resulted in glazes running off the pot. There was a need to find a balance between adding clay and silica to the feldspar and manganese without diluting the concentration of available metal oxides and feldspar. It was also extremely difficult to apply these glazes consistently, and fire them in such a way as to reach maturity without overfiring.

Firing: All tests were fired in high temperature gas kilns. I usually fired to 1260C, or Orton cone 10. A majority of my testing was in standard cone 10 reduction firing, with a 1 hour body reduction at cone 012-> cone 08, and a 6-10 hour firing from cone 08-> cone 10. Recipes with 15% copper produced a striking gold color in oxidation environments, and glazes in oxidation firings bubbled and boiled up between cone 7-9, which suggests a similar thermal reduction similar to oil spot glazes.

Cooling: Most of my firings were in small soft brick or fiber kilns, so the possibility of extended cooling cycles was limited. I found that crash cooling seemed to promote smoother, less brilliant surfaces, and a moderately fast cool was ideal in creating a balance between bright color and reasonably smooth surface. Longer cooling promoted larger crystals to a point, and excessively long cooling cycles promoted a matte surface. Reduction cooling remains an exciting possibility which mostly extended beyond the scope of my research. A very interested mottled crystal growth was observed on bottle forms cooled with a 3 hour reduction hold at 1840F.

[1] Caiger-Smith, Alan. Lustre Pottery: Technique, Tradition, and Innovation in Islam and the Western World. London: Faber and Faber, 1985. Print. Pg. 21

[2] Caiger-Smith, 1985, Pg. 177

[3] “Iridescence in Lepidoptera”. Photonics in Nature (originally in Physics Review). University of Exeter. September 1998. Retrieved April 27, 2012.


Britt, John. The Complete Guide to High-fire Glazes: Glazing & Firing at Cone 10. New York: Lark, 2004. Print.

Caiger-Smith, Alan. Lustre Pottery: Technique, Tradition, and Innovation in Islam and the Western World. London: Faber and Faber, 1985. Print.Pg 149

Conrad, John W. Black Pearl and Other Saturated Metallic Glazes. Santa Ana, CA: Falcon Division of Aardvark Clay, 2010. Print.

Currie, Ian. Revealing Glazes Using the Grid Method. Australia: Bootstrap, 2000. Print.

Daly, Greg. Lustre. London: A. & C. Black, 2012. Print.pg. 131

Hamer, Frank, and Janet Hamer. The Potter’s Dictionary of Materials and Techniques. London: & C Black, 1991. Print.